Stabilité Polynômiale des Corps Différentiels

نویسنده

  • Natacha Portier
چکیده

A notion of complexity for an arbitrary structure was defined in the book of Poizat Les petits cailloux (1995): we can define P and NP problems over a differential field K. Using the Witness Theorem of Blum et al., we prove the P-stability of the theory of differential fields: a P problem over a differential field K is still P when restricts to a sub-differential field k of K. As a consequence, if P = NP over some differentially closed field K, then P = NP over any differentially closed field and over any algebraically

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-simplifiée modulo p des représentations semi-stables : une approche algorithmique

Le but de cet article est de présenter un algorithme de complexité polynômiale pour calculer la semisimplifiée modulo p d’une Qp-représentation semi-stable du groupe de Galois absolu d’un corps p-adique (i.e. une extension finie de Qp). Pour ce faire, nous utilisons abondamment la théorie de Hodge p-adique et, en particulier, la théorie des modules de Breuil-Kisin.

متن کامل

Differential ‘Galois’ extensions with new constants Extensions différentielles « galoisiennes » avec nouvelles constantes

Article history: Received 12 February 2009 Accepted after revision 6 April 2010 Presented by Bernard Malgrange Let F be a differential field with algebraically closed field of constants C and let E be a differential field extension of F . The field E is a differential Galois extension if it is generated over F by a full set of solutions of a linear homogeneous differential equation with coeffic...

متن کامل

Quelques remarques concernant la théorie des corps ordonnés différentiellement clos

We first propose a “geometrical” axiomatization for the theory of closed ordered differential fields (denoted CODF) introduced by M.Singer in 1978 (see [Si]). This axiomatization is the analogue of the Pierce-Pillay axiomatization for the theory of differentially closed fields of characteristic zero (see [PP]). We also remark that a differential lifting principle can be used to prove that CODF ...

متن کامل

Stability of a Finite Volume Scheme for the Incompressible Fluids

We introduce a finite volume scheme for the two-dimensional incompressible Navier-Stokes equations. We use a triangular mesh. The unknowns for the velocity and pressure are respectively piecewise constant and affine. We use a projection method to deal with the incompressibility constraint. We show that the differential operators in the Navier-Stokes equations and their discrete counterparts sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 64  شماره 

صفحات  -

تاریخ انتشار 1999